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• Are real-time systems  
• Found in trains, nuclear power plants, automation 
• Run on domain-specific operating systems.
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E N  5 0 1 2 8  -  R A I LWAY
• Unit (component) level testing 

• A design is used as expected output (test oracle) 
• The use of functional testing is mandated 
• Some level of code coverage is recommended
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(a) An example of an IEC 61131-3 program.

# Tests IN1 IN2 IN3 IN4
1 1 1 5 4
2 0 1 5 4
3 1 0 5 4
4 1 1 5 3
5 1 1 5 5
6 1 1 4 4
7 1 1 3 4

(b) An example of a test suite satisfying base-choice criterion.

Fig. 1: A program with four inputs and two outputs written
using the IEC 61131-3 programming language and a test suite
satisfying base-choice criteria.

programming language we refer the reader to the work of John
et al. [7].

B. Base-Choice Coverage Criterion

The base-choice coverage criterion was initially introduced
by Ammann and Offutt [1]. This combination strategy works
by varying the value of one input at the time while keeping
all other inputs at fixed base values until all combinations
have been used. This strategy causes each value choice of an
input parameter to be used at least once together with the
base choices of all the other input parameters. For example,
consider the program in Figure 1a with four input parameters,
where IN1 and IN2 have two value choices each (i.e., 0 and
1) while IN3 and IN4 have three value choices each (i.e., 3, 4,
and 5). The program has a typical normal input behavior and
this corresponds to a particular default choice (or base choice).
Ammann and Offutt defined this default value choice as the
value that corresponds to the normal model of operation for
each input parameter. In the above example, we assume that
(1, 1, 5, 4) is the base test containing the default choice for
each each input parameter. To satisfy base-choice coverage,
for each value choice in an input parameter, we combine
the specific choice with the base choice for all other input
parameters. In the above example, if (1, 1, 5, 4) is the base
test, then we also choose additional tests shown in Figure 1b
(i.e., Tests 2 to 7). As the program is executed exactly once
per cycle P in a loop, tests are applied to the program every
500ms. Industrial control software such as the one shown in

Figure 1a contain timers that require input parameters to retain
certain choice values for an amount of time in order to activate
an event (i.e., OUT1 becomes active when the input of the
TON block is true for more than 5s). We note here that the
tests shown in Figure 1b satisfying base-choice coverage are
not adequate for activating OUT1. An engineer testing the
above example program would want to add other useful tests.

Evidence on evaluating the effectiveness of base-choice
criteria is sparse. Grindal et al. [5] showed that base-choice
achieves high fault detection while using fewer tests than other
combinatorial strategies when used on programs implemented
in the C programming language. To our knowledge, no previ-
ous studies have looked at the use of base choice on industrial
control software. This kindled our interest in studying how
base-choice criterion can be effectively used for such systems.

III. TIMED BASE-CHOICE STRATEGY

As it turns out, the base-choice criterion as it is defined
by Ammann and Offutt [1] is not particularly useful for
IEC 61131-3 programs. Defining tests by selecting the value
choices in each input parameter without taking into account
the fact that the program is executed cyclically, results in an
insufficient test suite (i.e., set of tests) for testing the normal
operation of timers.

IEC 61131-3 programs typically have a time-depended
behavior. This behavior require inputs to retain certain input
values for some time in order to trigger events within the
program. It is obvious that base-choice criterion in its orig-
inal definition when used to generate tests for IEC 61131-3
software is not sufficient. We extend the base-choice coverage
criterion by providing a time choice causing the varying input
values to remain fixed for a certain amount of time T .

We define the timed base-choice criterion as follows: for
each value choice in an input parameter, that choice is used
in combination with the base choice for all the other input
parameters for a certain amount of time determined by the
time choice T . This causes each test satisfying base-choice
criteria to be used several times for a certain amount of time.
Some IEC 61131-3 programs might have multiple time choices
T per program, but we consider only one normal time choice
for simplicity in this study.

The following method creates tests that are based on the
timed base-choice strategy for an IEC 61131-3 program:

1) Create the input model. The first step is to organize the
input parameters in a list containing all the value choices.
This is intended to be created automatically or manually
by a test engineer.

2) Identify the timing constraint. This is typically related
to the nominal timing behavior of the IEC 61131-3
program as taken from the functional requirements. The
time choice should take into account that the values
choices should be provided at the right time-points. In the
example shown in Figure 1a such a timing requirement
is illustrated: the output OUT1 must be activated after
a certain amount of time. In this case, we can choose
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(c) Number of tests in a test suite

Fig. 3: Mutation score, achieved code coverage and number of test comparison between timed base-choice tests (TBC), base-
choice tests (BC) and pure random test suites (Rand) of the same size as the ones created for base-choice tests; boxes spans
from 1st to 3rd quartile, black middle lines mark the median and the whiskers extend up to 1.5x the inter-quartile range and
the circle symbols represent outliers.

scores, code coverage results and the number of test cases
for each of the collected test suites) are summarized in the
form of boxplots in Figure 3. To answer RQ1 regarding
the effectiveness in terms of fault detection, we focused on
comparing the test suite quality. For all programs, as shown
in Figure 3a, the fault detection scores of TBC test suites are
showing an average mutation score of 84% and are clearly
superior to either BC test suites (57% mutation score on
average) and random test suites (42% mutation score on
average). Hence a test being created using TBC is a good
indicator of test effectiveness in terms of fault detection. As
seen in Figure 3b, the use of TBC achieves on average 85%
decision coverage. The answer to question RQ2 regarding
code coverage is matching our expectations: TBC test suites
achieve higher code coverage than BC (on average 78%) or
random test suites (on average 65%). Based on the results
highlighted in Figure 3c, the use of TBC consistently results
in significantly more number of tests (with 300% more tests
on average) for all programs compared to BC.

The results show that timed base-choice criterion is useful
for designing tests for industrial control software containing
timing behavior. The definition of base-choice criterion has
offered no information as to which tests to generate for
properly testing the timed behavior in an industrial control
software. In this paper we have defined the timed base-
choice coverage criterion, and demonstrated the feasibility of
applying this criterion.

V. CONCLUSIONS

In this study we proposed the use of timed base-choice
criterion for testing IEC 61131-3 industrial control software.
We conducted a case study in which we compared the cost
and effectiveness between timed base-choice and base-choice
created test suites. We used recently developed real-world
industrial programs written in the IEC 61131-3 programming
language, a popular language for developing safety-critical

embedded systems using programmable logic controllers. The
results show that timed base-choice generated test suites
achieve better code coverage and fault detection compared to
base-choice created test suites. The use of timed base-choice
criterion needs to be further studied; we need to consider
the implications of using multiple base and time choices. In
addition, base-choice is only one type of combination strategy
and we would need to evaluate the use of stronger criteria
such as t-wise testing.

REFERENCES

[1] Paul Ammann and Jeff Offutt. Using formal methods to derive test
frames in category-partition testing. In Computer Assurance, 1994.
COMPASS’94 Safety, Reliability, Fault Tolerance, Concurrency and Real
Time, Security. Proceedings of the Ninth Annual Conference on, pages
69–79. IEEE, 1994.

[2] Paul Ammann and Jeff Offutt. Introduction to Software Testing.
Cambridge University Press, 2008.

[3] CENELEC. 50128: Railway Application: Communications, Signaling
and Processing Systems, Software For Railway Control and Protection
Systems. In Standard Official Document. European Committee for
Electrotechnical Standardization, 2001.

[4] Richard A DeMillo, Richard J Lipton, and Frederick G Sayward.
Hints on Test Data Selection: Help for the Practicing Programmer. In
Computer, volume 11. IEEE, 1978.

[5] Mats Grindal, Birgitta Lindström, Jeff Offutt, and Sten F Andler. An
evaluation of combination strategies for test case selection. Empirical
Software Engineering, 11(4):583–611, 2006.

[6] IEC. International Standard on 61131-3 Programming Languages. In
Programmable Controllers. IEC Library, 2014.

[7] Karl-Heinz John and Michael Tiegelkamp. IEC 61131-3: Program-
ming Industrial Automation Systems: Concepts and Programming Lan-
guages, Requirements for Programming Systems, Decision-Making Aids.
Springer, 2010.
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from 1st to 3rd quartile, black middle lines mark the median and the whiskers extend up to 1.5x the inter-quartile range and
the circle symbols represent outliers.

scores, code coverage results and the number of test cases
for each of the collected test suites) are summarized in the
form of boxplots in Figure 3. To answer RQ1 regarding
the effectiveness in terms of fault detection, we focused on
comparing the test suite quality. For all programs, as shown
in Figure 3a, the fault detection scores of TBC test suites are
showing an average mutation score of 84% and are clearly
superior to either BC test suites (57% mutation score on
average) and random test suites (42% mutation score on
average). Hence a test being created using TBC is a good
indicator of test effectiveness in terms of fault detection. As
seen in Figure 3b, the use of TBC achieves on average 85%
decision coverage. The answer to question RQ2 regarding
code coverage is matching our expectations: TBC test suites
achieve higher code coverage than BC (on average 78%) or
random test suites (on average 65%). Based on the results
highlighted in Figure 3c, the use of TBC consistently results
in significantly more number of tests (with 300% more tests
on average) for all programs compared to BC.

The results show that timed base-choice criterion is useful
for designing tests for industrial control software containing
timing behavior. The definition of base-choice criterion has
offered no information as to which tests to generate for
properly testing the timed behavior in an industrial control
software. In this paper we have defined the timed base-
choice coverage criterion, and demonstrated the feasibility of
applying this criterion.

V. CONCLUSIONS

In this study we proposed the use of timed base-choice
criterion for testing IEC 61131-3 industrial control software.
We conducted a case study in which we compared the cost
and effectiveness between timed base-choice and base-choice
created test suites. We used recently developed real-world
industrial programs written in the IEC 61131-3 programming
language, a popular language for developing safety-critical

embedded systems using programmable logic controllers. The
results show that timed base-choice generated test suites
achieve better code coverage and fault detection compared to
base-choice created test suites. The use of timed base-choice
criterion needs to be further studied; we need to consider
the implications of using multiple base and time choices. In
addition, base-choice is only one type of combination strategy
and we would need to evaluate the use of stronger criteria
such as t-wise testing.
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choice tests (BC) and pure random test suites (Rand) of the same size as the ones created for base-choice tests; boxes spans
from 1st to 3rd quartile, black middle lines mark the median and the whiskers extend up to 1.5x the inter-quartile range and
the circle symbols represent outliers.

scores, code coverage results and the number of test cases
for each of the collected test suites) are summarized in the
form of boxplots in Figure 3. To answer RQ1 regarding
the effectiveness in terms of fault detection, we focused on
comparing the test suite quality. For all programs, as shown
in Figure 3a, the fault detection scores of TBC test suites are
showing an average mutation score of 84% and are clearly
superior to either BC test suites (57% mutation score on
average) and random test suites (42% mutation score on
average). Hence a test being created using TBC is a good
indicator of test effectiveness in terms of fault detection. As
seen in Figure 3b, the use of TBC achieves on average 85%
decision coverage. The answer to question RQ2 regarding
code coverage is matching our expectations: TBC test suites
achieve higher code coverage than BC (on average 78%) or
random test suites (on average 65%). Based on the results
highlighted in Figure 3c, the use of TBC consistently results
in significantly more number of tests (with 300% more tests
on average) for all programs compared to BC.

The results show that timed base-choice criterion is useful
for designing tests for industrial control software containing
timing behavior. The definition of base-choice criterion has
offered no information as to which tests to generate for
properly testing the timed behavior in an industrial control
software. In this paper we have defined the timed base-
choice coverage criterion, and demonstrated the feasibility of
applying this criterion.

V. CONCLUSIONS

In this study we proposed the use of timed base-choice
criterion for testing IEC 61131-3 industrial control software.
We conducted a case study in which we compared the cost
and effectiveness between timed base-choice and base-choice
created test suites. We used recently developed real-world
industrial programs written in the IEC 61131-3 programming
language, a popular language for developing safety-critical

embedded systems using programmable logic controllers. The
results show that timed base-choice generated test suites
achieve better code coverage and fault detection compared to
base-choice created test suites. The use of timed base-choice
criterion needs to be further studied; we need to consider
the implications of using multiple base and time choices. In
addition, base-choice is only one type of combination strategy
and we would need to evaluate the use of stronger criteria
such as t-wise testing.
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• multiple base and time choices 

• evaluate the use of stronger criteria 

• Use naturally-occurring faults 

• Use other systems from other domains
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Timed Base-Choice (TBC)
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Fig. 2: Overview of the experimental method. For each pro-
gram tests are generated and executed on both the original
program as well as on the injected faults (i.e., mutated pro-
grams).

one time choice as a positive integer number measured
in time units (e.g., T = 6s).

3) Identify a base and time choice test. For each input pa-
rameter, the test engineer chooses one of the value choices
as the base choice. Ammann and Offutt [1] suggested that
this can be typically a default or nominal value. The base
choice test is obtained by selecting the base choice for
each input parameter together with the time choice. In
the above example, the base test (1, 1, 5, 4) is fixed for
6s.

4) Create a test suite. The input model together with the
base and time choice can be used to automatically choose
the remaining tests by varying over value choices for
each input parameter and fixing these values for a certain
amount of time (i.e., Tests 1 to 7 are fixed for 6s each).

This procedure can be used for creating executable test scripts
for IEC 61131-3 programs for both base-choice and timed
base-choice criteria.

The number of tests for timed base-choice criterion for a
program cycle P , time choice T 1, N input variables where
each input i has bi choices is:

T

P
+

NX

i=1

⇣
(bi � 1)⇥ T

P

⌘
(1)

The number of tests needed for achieving timed base-choice
is linear to the time choice T . Thus there is a significant
execution cost disadvantage of using timed base-choice over
base-choice.

IV. CASE STUDY

We designed a case study for evaluating the use of base
choice and timed base-choice criteria for testing IEC 61131-
3 software. In this section we show how we selected the
programs and performed the case study.

A. Method

The case study was performed according to the method
shown in Figure 2. We aimed to answer the following research
questions:

1T and P are measured in the same time units

• RQ1: Are timed base-choice tests able to detect more
faults than random tests or base-choice tests?

• RQ2: Are timed base-choice tests able to achieve better
code coverage than random tests or base-choice tests?

We started the case study by considering an industrial
system actively developed by Bombardier Transportation, a
large-scale company focusing on development and manufac-
turing of trains and railway equipment. The system is a
train control management system (TCMS). TCMS is a dis-
tributed embedded system in charge of the operation-critical,
safety-related functionality of the train. The system contains
control and communication functions for high speed trains.
These functions are developed as software programs using
an IEC 61131-3 graphical programming language named
Function Block Diagram (FBD) [6]. From a total of 20 IEC
61131-3 programs provided by Bombardier Transportation,
we identified 11 candidate programs containing timers and
timed behavior, making them suitable for comparing timed
base-choice with base-choice criteria. We used the remaining
programs for performing the case study. These programs
contained on average per program: 22 decisions (i.e., branches)
and 13 input variables. For each of the eleven programs, we
collected test suites generated based on timed base-choice
and base-choice criteria as well as random test suites with
the same size as their base-choice counterparts. The input
parameter values were obtained from the comments contained
in each program. In addition, we asked one test engineer from
Bombardier Transportation, responsible for testing the IEC
61131-3 programs used in this study, to carefully identify the
base choice value of each input parameter. The test engineer
provided base choice values for all input variables. The test
engineer also provided a time choice to be used for generating
timed base-choice tests.

In this study several measures were collected for answering
the research questions. Code coverage criteria are used in
software testing to assess the thoroughness of tests [2] and
the extent to which the software structure has been exercised.
In this study, we are using the decision coverage criterion
(e.g., branch coverage). For the TCMS programs selected in
this study, the EN 50128 safety standard [3] requires test en-
gineers to create tests achieving high decision coverage. Fault
detection was measured using mutation analysis. Mutation
analysis is the technique of creating faulty implementations of
a program (usually in an automated manner) for the purpose
of examining the fault detection ability of a test suite [4]. Just
et al. [8] provided compelling evidence that the mutation score
is a fairly good proxy for real fault detection ability. In the
creation of mutants we rely on previous studies that looked
at commonly occurring faults in IEC 61131-3 software [9].
In total, for all of the selected programs, 867 mutants (faulty
programs) were generated by automatically introducing faults
into the original program.

B. Results and Discussion

This section provides an analysis of the data collected in
this case study. The overall results of this study (i.e., mutation
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Fig. 3: Mutation score, achieved code coverage and number of test comparison between timed base-choice tests (TBC), base-
choice tests (BC) and pure random test suites (Rand) of the same size as the ones created for base-choice tests; boxes spans
from 1st to 3rd quartile, black middle lines mark the median and the whiskers extend up to 1.5x the inter-quartile range and
the circle symbols represent outliers.

scores, code coverage results and the number of test cases
for each of the collected test suites) are summarized in the
form of boxplots in Figure 3. To answer RQ1 regarding
the effectiveness in terms of fault detection, we focused on
comparing the test suite quality. For all programs, as shown
in Figure 3a, the fault detection scores of TBC test suites are
showing an average mutation score of 84% and are clearly
superior to either BC test suites (57% mutation score on
average) and random test suites (42% mutation score on
average). Hence a test being created using TBC is a good
indicator of test effectiveness in terms of fault detection. As
seen in Figure 3b, the use of TBC achieves on average 85%
decision coverage. The answer to question RQ2 regarding
code coverage is matching our expectations: TBC test suites
achieve higher code coverage than BC (on average 78%) or
random test suites (on average 65%). Based on the results
highlighted in Figure 3c, the use of TBC consistently results
in significantly more number of tests (with 300% more tests
on average) for all programs compared to BC.

The results show that timed base-choice criterion is useful
for designing tests for industrial control software containing
timing behavior. The definition of base-choice criterion has
offered no information as to which tests to generate for
properly testing the timed behavior in an industrial control
software. In this paper we have defined the timed base-
choice coverage criterion, and demonstrated the feasibility of
applying this criterion.

V. CONCLUSIONS

In this study we proposed the use of timed base-choice
criterion for testing IEC 61131-3 industrial control software.
We conducted a case study in which we compared the cost
and effectiveness between timed base-choice and base-choice
created test suites. We used recently developed real-world
industrial programs written in the IEC 61131-3 programming
language, a popular language for developing safety-critical

embedded systems using programmable logic controllers. The
results show that timed base-choice generated test suites
achieve better code coverage and fault detection compared to
base-choice created test suites. The use of timed base-choice
criterion needs to be further studied; we need to consider
the implications of using multiple base and time choices. In
addition, base-choice is only one type of combination strategy
and we would need to evaluate the use of stronger criteria
such as t-wise testing.
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